TruTech Development, LLC
TruTech Development, LLC

Tuesday, April 12, 2022
Friday, March 4, 2022
Perfomalist #ChangeDetection API was used against #MongoDB #perfomanceTesting dataset
We are participating in the data challenge for icpe2022.spec.org conference.
The challenge dataset is provided by MongoDB.
Initially some small part of the data was used to prove that Perfomalist CPD API can be used.
Data looks like a big data cube with numerous dimensional variables and two factual ones (datetime and value). I took one case with a particular slice of this cube and processed that (datetime-value) by calling the Perfomalist API. The result I have plotted using Excel and can be seen in the following picture.
That (meta-) data then should be correlated with events happening (or not happening) around any change dates detected, e.g., feature flag tuned on/off (that data is hidden from us so far). The result should help to explain each change. Additionally, to measure the magnitude of the change I would suggest calculating the entropy based imbalance of the data between changes (see my last paper how to do that). For example, that could tell how stable or not stable performance had become after particular change.
After my 1st initial Peorfomalist usage, more rigorous usage was done against MongoDB dataset, based on which the following paper was written and accepted for data challenge track of the conference:
"Change Point Detection for MongoDB Time Series Performance Regression" paper for ACM/SPEC ICPE 2022 Data Challenge Track
Monday, February 28, 2022
Monday, January 10, 2022
Perfomalist Release Notes
- Perfomalist 1.1. has now the Change Point Detection API as described in the previous post:
The Change Points Detection Perfomalist API beta version is released.
Filipp Trubin
- Perfomalist 1.2. has additional two columns in the table view of the weekly profile to underline two types of anomalies the tool detects:
Thursday, January 6, 2022
Perfomalist is referenced in the following published at Springler paper:
LINK to paper: https://www.trub.in/2022/01/performance-anomaly-and-change-point.html
Intelligent Sustainable Systems pp 403-407| Cite as
Performance Anomaly and Change Point Detection for Large-Scale System Management
Wednesday, December 22, 2021
Perfomalist
Perfomalist (www.Perfomalist.com) is a web based anomaly and change point detection tool. The method used by the tool is SETDS - Statistical Exception and Trend Detection System, which is a variation of the Statistical Process Control method applied to time series data. The key idea of the method is EV (Exception Value) which indicates the severity of anomalies calculated as a difference between control limits and actual anomalous data points. Any change that occurs first would appear as an anomaly and then may become a normality (new norm), so collecting overtime and analyzing the severity of all anomalies opens the possibility to find phases in the data history with different patterns. To detect change points between phases one just needs to find all the roots of the following equation: EV(t)=0 , where t is time. [1]. Using this method the Perfomalist API call returns all change points found in the input CSV data.
[1] - Igor Trubin, "Exception Based Modeling and Forecasting" , 34th International Computer Measurement Group Conference, December 7-12, 2008, Las Vegas, Nevada, USA, ProceedingsThursday, December 2, 2021
Sunday, November 21, 2021
The Change Points Detection Perfomalist API beta version is released. Everybody is welcome to test!
Link to tool: www.Perfomalist.com
Control Points API
POST
https://api.perfomalist.com/
'Accept: text/plain'
'Content-Type: text/csv'
Input
Post body should be input data in CSV format. First three lines are parameters also in CSV format.
- sValue - Statistical band in %, where 100 is UCL=MAX, 0 is UCL=LCL=mean).
- eValue - Exception Value (EV) threshold in % of actual historical average.
- BaseLineLength - The time period to compare current value against.
For example:
sValue, 99
eValue, 5
BaseLineLength , 7
These may be omitted in which case default values will be used.
Parameters are followed by data as shown in example input which could downloaded from www.Perfomalist.com.
7/2/2011,0,236274
Output
Output is JSON style data:
{
"Change Point": { #full list of values for respective dates, populated by zeroes if no change point detected to aid with graphing
"Date": value
},
"Change Points Only": { #only dates of change points with respective values
"Change Point": {
"Date": value
}
},
"Ev": { #exeption values for respective dates
"Date": value
},
"LCL": { #lower control limit value for respective dates
"Date": value
},
"Moving Average": { #moving average value for respective dates
"Date": value
},
"UCL": { #upper control limit value for respective dates
"Date": value
},
"Value": { #user input value for respective dates
"Date": value
}
}
EXAMPLE 1 is applied against the sample data from www.Performalist.com by using Postman tool:
Original Change Point Detection method explained here:
http://www.trub.in/2020/08/cpd-change-points-detection-is-planed.html
Saturday, April 3, 2021
Saturday, August 22, 2020
CPD - Change Points Detection is planed to be implemented in the free web tool Perfomalist. UPDATE: API is developed!
update : 11/21/21 The Perfomalist CPD API is released.
https://www.trutechdev.com/2021/11/the-change-points-detection-perfomalapi.html
_____________
See details: http://www.trub.in/2020/08/cpd-change-points-detection-is-planed.html
Monday, June 8, 2020
The "Exercise 5. Build your weekly IT-Control Chart by Perfomalist tool" was added to my on-line CMG class "Perfomaly Detection"
As more trainees keep enrolling to my CMG on-line class,
I have started updating the content.
-
From both a user and technical standpoint, WordPress is the easiest Content Management System (CMS) to learn and use. What is more, its in...
-
Link to tool: www.Perfomalist.com Control Points API POST https://api.perfomalist.com/ api/controlpoints.py 'Accept: text/plain' ...