The paper about using #Perfomalist "Change Point Detection for #MongoDB Time Series Performance Regression" was cited in the following paper: "Estimating Breakpoints in Piecewise Linear Regression Using #MachineLearning Methods", where our method was mentioned as " … offer a hybrid change point detection system..."
Sunday, November 6, 2022
Tuesday, April 12, 2022
Friday, March 4, 2022
Perfomalist #ChangeDetection API was used against #MongoDB #perfomanceTesting dataset
We are participating in the data challenge for icpe2022.spec.org conference.
The challenge dataset is provided by MongoDB.
Initially some small part of the data was used to prove that Perfomalist CPD API can be used.
Data looks like a big data cube with numerous dimensional variables and two factual ones (datetime and value). I took one case with a particular slice of this cube and processed that (datetime-value) by calling the Perfomalist API. The result I have plotted using Excel and can be seen in the following picture.
That (meta-) data then should be correlated with events happening (or not happening) around any change dates detected, e.g., feature flag tuned on/off (that data is hidden from us so far). The result should help to explain each change. Additionally, to measure the magnitude of the change I would suggest calculating the entropy based imbalance of the data between changes (see my last paper how to do that). For example, that could tell how stable or not stable performance had become after particular change.
After my 1st initial Peorfomalist usage, more rigorous usage was done against MongoDB dataset, based on which the following paper was written and accepted for data challenge track of the conference:
"Change Point Detection for MongoDB Time Series Performance Regression" paper for ACM/SPEC ICPE 2022 Data Challenge Track
Monday, February 28, 2022
Monday, January 10, 2022
Perfomalist Release Notes
- Perfomalist 1.1. has now the Change Point Detection API as described in the previous post:
The Change Points Detection Perfomalist API beta version is released.
Filipp Trubin
- Perfomalist 1.2. has additional two columns in the table view of the weekly profile to underline two types of anomalies the tool detects:
Thursday, January 6, 2022
Perfomalist is referenced in the following published at Springler paper:
LINK to paper: https://www.trub.in/2022/01/performance-anomaly-and-change-point.html
Intelligent Sustainable Systems pp 403-407| Cite as
Performance Anomaly and Change Point Detection for Large-Scale System Management
Perfomalist team is presenting at www.CMGimpact.com international conference in Orlando.
PRODUCT: www.Perfomalist.com www.CMGimpact.com LinkedIn Post ABSTRACT: The MASF/SETDS method of detecting changes and anomalies in performa...
-
Link to tool: www.Perfomalist.com Control Points API POST https://api.perfomalist.com/ api/controlpoints.py 'Accept: text/plain' ...
-
"Change Point Detection (#ChangeDetection) for MongoDB Time Series Performance Regression" paper for ACM/SPEC ICPE 2022 Data Chall...